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a b s t r a c t

We investigate the effect of parasitoid phenology on host–parasitoid population cycles. Recent
experimental research has shown that parasitized hosts can continue to interact with their unparasitized
counterparts through competition. Parasitoid phenology, in particular the timing of emergence from the
host, determines the duration of this competition. We construct a discrete-time host–parasitoid model in
whichwithin-generation dynamics associatedwith parasitoid timing is explicitly incorporated.We found
that late-emerging parasitoids induce less severe, but more frequent, host outbreaks, independent of the
choice of competitionmodel. The competition experiencedby theparasitizedhost reduces the parasitoids’
numerical response to changes in host numbers, preventing the ‘boom-bust’ dynamics associated with
more efficient parasitoids. We tested our findings against experimental data for the forest tent caterpillar
(Malacosoma disstria Hübner) system, where a large number of consecutive years at a high host density is
synonymous with severe forest damage.

Crown Copyright© 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction

The timing of parasitoid emergence can impact the dynamics
of parasitoid populations. This impact may be due to variable en-
vironmental factors that change between different possible para-
sitoid emergence times. However, a more subtle possibility arises.
Emergence timing (also referred to as emergence phenology) may
affect nonlinear host–parasitoid interaction dynamics. In particu-
lar, as we show below, late emerging parasitoids may experience
environments of heightenedwithin-host competition, and these in
turn can affect the long-term parasitoid population dynamics.
Those parasitoids most susceptible to the impact of emer-

gence timing on within-host competition dynamics are so-called
koinobionts, parasitoids that do not kill their host immediately
upon entry. This common form of parasitism allows hosts to con-
tinue feeding and developing until a later stage, whereupon the
host is consumed and the parasite emerges. Because the impacts of
within-host competition increase over time, late-emerging koino-
bionts run a heightened risk of mortality arising from their host
succumbing to the within-host competition.
Experimental studies have shown competition occurs between

both parasitized and unparasitized hosts. A study of the Indian
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mealmoth systemby Cameron et al. (2005) found that competition
andmortality of unparasitized hostswas increased by the presence
of parasitized hosts. Parasitism, itself, may affect the competitive
ability of a host, as shown by Sisterson (2003)’s study of cranberry
fruitworm, Acrobasis vaccinii Riley, parasitized by the hymen-
opteran parasitoid Phanerotoma franklini Gahan. In both studies,
interactions are koinobiont. The parasitized hosts are not func-
tionally dead, and the interaction between parasitized and unpar-
asitized hosts ended only when the parasitoid emerged from the
host.
Discrete-time models are suitable for natural insect systems

from temperate climates that exhibit non-overlapping generations
and enter diapause to overwinter. This is because the temperature-
driven diapause has the effect of synchronizing the developmen-
tal clock of the population. Despite awareness that age structure
and the specific host stage attacked by the parasitoid are impo-
rtant factors in determining the persistence of an introduced
parasitoid (Godfray andWaage, 1991), there has been limited theo-
retical investigation into parasitoid emergence timing for discrete-
timemodels. Even though discrete-time systems are well suited to
describing diapausing populations, explicit descriptions of emer-
gence phenology in this framework are missing from the litera-
ture. Those investigations made for discrete-time models have the
simplifying assumption that parasitism occurs either before or af-
ter host competition (Wang and Gutierrez, 1980; May et al., 1981;
Umbanhowar and Hastings, 2002), not during competition.
To date, explicit descriptions of phenology have largely been

limited to continuous-time stage-structured models, which are
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ideal for describing insects whose generations overlap, but not for
diapausing insects. Continuous-time stage-structured models for
the timing of density-regulating events start with the pioneering
work of Gurney et al. (1983). This work has been extended
to include asymmetry in host density-dependence across host
stages (Wearing et al., 2004; Briggs et al., 2000), parasitoid species
which attack different host stages (Briggs, 1993; Briggs et al., 1993)
and competition betweenparasitized hosts (Spataro andBernstein,
2004). Most recently, White et al. (2007) included inter-class
competition between the parasitized and unparasitized hosts. The
host–parasitoid population dynamics were dramatically affected
by the competition, which stabilized the interaction but in some
cases induced parasitoid extinction.
In this paper we explore the effects of parasitoid phenology

and inter-class competition in a discrete-time framework. Of
particular interest is how these mechanisms impact the host
population cycles that are commonplace in the natural world.
We extend the ideas of Wang and Gutierrez (1980), May et al.
(1981) and Umbanhowar and Hastings (2002), and explicitly
model within-season parasitoid phenology by describing when
a parasitoid emerges from a parasitized host. Competition for
resources induces mortality of hosts, so we hypothesize that
later-emerging parasitoids experience prolonged competition
and a reduction in numbers compared to their early-emerging
counterparts. We expect that later parasitoid emergence stabilizes
the host–parasitoid dynamics. We investigate this effect of
phenology on competition for a variety of competition models:
specifically, we ask how emergence time affects the characteristics
of host–parasitoid population cycles.
In Section 2 we derive a general description of parasitoid

phenology by allowing competitive mortality of parasitized hosts.
The focus of the analysis (Section 3) is to understand how
oscillations in the host–parasitoid population are affected by
parasitoid phenology. In particular, we look at the stabilizing
effects of late parasitoid emergence and analyze the duration and
frequency of host outbreaks as a function of parasitoid phenology.
Finally, in Section 4, we validate themodel against time series data
for the forest tent caterpillar system and discuss the implications
of parasitoid phenology for biological control.

2. The model

There havebeenmany extensions of the original host–parasitoid
model by Nicholson and Bailey (1935), exploring mechanistic de-
scriptions of parasitism and host regulation in both spatial and
non-spatial contexts (see Hassell (2000, 1978) for reviews). We
present a generalization that focuses on explicitly describing par-
asitoid phenology, which has often been overlooked in discrete-
time models. Parasitoid emergence time determines the duration
of competition between parasitized and unparasitized hosts, and
we explore the effects of parasitoid emergence time under a range
of competition models.
Astrom et al. (1996) and Rodriguez (1988) derived an example

of phenologically explicit single-population discrete-time model.
They partitioned the within-season dynamics into a series of ‘self-
regulating’ events and demonstrated that complex dynamics can
emerge from such models, including the creation of multiple
equilibria. We now extend these ideas to a multi-species system.
The general model that we present below has two extreme

scenarios:
(1) Parasitoids emerge from the host prior to density-dependent
competition. In this case there is no competition between
parasitized and unparasitized hosts.

(2) The period of density-dependent competition between hosts
is followed by parasitoid emergence. In this case, parasitized
hosts experience the maximum amount of competition in a
season.

Scenario (1) assumes that parasitized hosts are functionally dead.
Examples are common in the literature and were first studied
by Beddington et al. (1975). A special case of (2) was addressed
by Wang and Gutierrez (1980), using a model developed further
by May et al. (1981). Parasitism following density-dependence in
the host life cycle was found to slightly reduce the stability of
the host–parasitoid population dynamics, and equilibrium host
densities were higher. Despite these early results, the study of
phenology in discrete-time models has been largely neglected in
the literature.
The model presented below allows us to consider the details

of parasitoid phenology. Competition between parasitized and
unparasitized hosts is described by a general functional form that
allows us to explore the effects of both contest and scramble
competition.

Ht+1 = Ht ×

Intrinsic
growth︷︸︸︷
er ×

Fraction of hosts
surviving density-dependence︷ ︸︸ ︷

e−µ(Ht ) ×

Fraction of hosts
surviving parasitism︷︸︸︷
f (Pt) (1a)

Pt+1 = Ht ×

Fraction of parasitised hosts
surviving density-dependence︷ ︸︸ ︷

e−αµ(Ht ) ×

Fraction of hosts
parasitized︷ ︸︸ ︷

(1− f (Pt)) . (1b)
In the model, Ht denotes the host density in year t and Pt the
corresponding parasitoid density. The probability of a host evading
parasitism is given by the zeroth term of the negative binomial,
f (Pt) = (1+aPt/κ)−κ (May, 1978). Here a describes the searching
efficiency of the parasitoid and 1/κ is the variance in host risk
to parasitism. The parameter κ allows us to consider clumped
parasitoid searching (κ < 1) and random searching (κ → ∞).
In the limit as κ → ∞, we obtain the zeroth term of the
Poisson distribution for the probability of evading parasitism (f (Pt)
= e−aPt ).
The parameter α describes parasitoid phenology and ranges

between 0 and 1, depending on the stage in the parasitized
host’s development from which the parasitoid emerges. The
timing of events in the host and parasitoid life cycles affects
the survival of both species. We use the host life cycle as a
reference point and model the timing of parasitism relative to
the host. We assume that parasitized and unparasitized hosts
compete for resources in functionally the same way. Therefore,
density-dependent mortality of parasitized hosts is given by the
term e−αµ(Ht ). The density-dependent mortality of hosts affects
parasitoids in two ways, reducing the number of host targets
and inducing the death of parasitized hosts. Both reduce the
potential number of new parasitoids. So parasitoid phenology can
be described using parasitoid emergence time, and we can ignore
the timing of the initial parasitoid attack in our single parasitoid
model. However, the timing of attack becomes important if we
consider a multi-parasitoid system, when competing parasitoid
species need to locate unparasitized hosts.
In Section 2.1 we explicitly describe the within-season dynam-

ics to explain our choice of the term to describe parasitoid mortal-
ity e−αµ(Ht ).

2.1. Within-season dynamics

Bellows (1981) derived a general form for density-dependence,
e−µ(Ht ), from a differential equation that describes within-season
host dynamics,

dH
dt
= −Hµ(H0), (2)

where µ(H0) relates mortality rate of the host population to the
initial host density, H0. Solving (2) at t = 1 (scaled season length)
gives the equation for hosts surviving one season of density-
dependentmortality, and formulated as a difference equation gives
Ht+1 = Ht exp(−µ(Ht)). (3)
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Table 1
Using maximum likelihood, seven models for host density-dependence, exp(−µ(Ht )), are fitted to the data described in Appendix B.1. Parameter estimates are given in the
table together with the standard deviation of the error, σ̂ . Corrected AIC is calculated for all models, the lowest value indicating the most parsimonious model.

Entry µ(H) = k-value Sign of d2µ/dH2 b̂ ĉ σ̂ AICc

1 b lnH − 0.94 0.74 26.67
2 cH 0 0.73 0.17 −1.71
3 ln(1+ cH) − 2.21 0.23 4.25
4 cHb +− 1.37 0.53 0.16 0.75
5 ln(1+ (cH)b) +− 2.90 0.74 0.18 2.93
6 b ln(1+ cH) − 69.00 0.01 0.17 1.87
7 ln(1+ exp(bH − c)) + 1.21 1.38 0.15 −0.94

Table 1 lists sevenmortality functionsµ(Ht) discussed by Bellows.
This formulation for density-dependence has the benefit that
µ(Ht) can be measured empirically (Haldane, 1949; Varley and
Gradwell, 1960).
The fraction of parasitized hosts surviving density-dependence

is found by using the host life cycle as a reference point and
partitioning the within-season events according to host life-stage.
We assume that the host’s life cycle consists of n non-overlapping
stages. Let τi be the duration of stage i, and T =

∑n
i=1 τi be

the duration of the host life cycle. Finally, since competition
for resources may be stage-dependent, we introduce a mortality
function µi(t) for hosts in stage i.
The number of host eggs at the start of the season is Ht , and

τ1/T denotes the proportion of the season that hosts are in the first
developmental stage. Solving Eq. (2) at the scaled time τ1/T gives
Ht exp(−µ1(Ht)(

τ1
T )) hosts surviving to the end of the first stage.

The number of hosts surviving to the end of stage n is therefore
given by

Hte−µ1(Ht )
τ1
T e−µ2(Ht )

τ2
T . . . e−µn(Ht )

τn
T = Hte

−
1
T (
n∑
i=1

τiµi(Ht ))

= Hte−µ(Ht ).

The seasonal mortality function, µ(Ht) = 1
T (
∑n
i=1 τiµi(Ht)), is a

weighted average of the mortality functions acting at each stage of
the host life cycle.
To model the effect of density-dependence on parasitoids, we

assume that parasitized and unparasitized hosts compete equally
for resources. A parasitoid survives to emerge from a host in stage L
provided the parasitized host has survived competition until stage
L. The number of hosts surviving density-dependence to reach the
end of the Lth stage is given by

Hte
−
1
T (

L∑
i=1

τiµi(Ht ))
= Hte−αµ(Ht ),

where

α =

L∑
i=1
τiµi(Ht)

n∑
i=1
τiµi(Ht)

=

1
T

L∑
i=1
τiµi(Ht)

µ(Ht)
. (4)

In this general case, µi(Ht)may differ for each stage.
In the simple case ofµi(Ht) = µ(Ht) for all iwe can define α by

α =
1
T

L∑
i=1

τi.

This expression also holds if density-dependence only affects
particular stages of the host life cycle, inwhich case T is interpreted
as the duration of the density-dependent period and, as before, α
is the proportion of the density-dependent season experienced by
the parasitized host.
In the example of Ricker density-dependence acting at each

stage, but with a stage-dependent carrying capacity, the expres-
sion for α can be shown to be independent of Ht . The stage-
dependent mortality is given by µi(Ht) = rHt/Ki, where Ki is the

carrying capacity of the ith stage and r is the intrinsic host growth
rate. Eq. (4) yields

α =

L∑
i=1
τi
rHt
Ki

n∑
i=1
τi
rHt
Ki

=
K
T

L∑
i=1

τi/Ki,

where K = T/(
∑n
i=1

τi
Ki
) is the seasonal carrying capacity and is

a weighted harmonic mean of the Kis. In this case the seasonal
mortality function is given by µ(Ht) = rHt/K .
In this paper we focus on the simplified case where µi(Ht) =

µ(Ht) for each density-dependent life stage i. The special case of
the model Eqs. (1) where µ(Ht) = r(Ht/K)b was considered by
Berstein (1986) and Taylor (1997). The range of α in the Bernstein
and Taylor models is unconstrained, allowing for parasitized hosts
to be more susceptible to competition than their unparasitized
counterparts. Their work focused on the stability properties of the
model; they found that increasing α increased the region of stable
coexistence and depressed host density. The objective of our work
is to study the host–parasitoid population cycles, investigating
how α affects the characteristics of these cycles under a range of
models for host competition. This gives insight into how parasitoid
phenology may impact on host outbreaks.

3. Results

The general model given by Eqs. (1) has three equilibria:
extinction of both host and parasitoid, host-only persistence, and
coexistence. In the absence of parasitoids, the host persists at a
stable equilibrium H∗ if r > µ(0). When µ′(H∗)H∗ > 2, the
host-only equilibrium becomes unstable via a period-doubling
bifurcation giving rise to regular cycles of period 2. Lastly,
stable limit cycles can exist when the host–parasitoid coexistence
equilibrium becomes unstable.
We now focus our attention on the existence of stable limit

cycles. Both the choice of parasitism function and host density-
dependence are known to affect the stability of the coexistence
equilibrium. Clumped parasitism (f (Pt) with κ < 1) and host
contest competition (e.g. µ(Ht) = r(Ht/K)b, with b < 1) increase
equilibrium stability and reduce the prevalence of population
cycles. To study how α affects the prevalence of host–parasitoid
population cycles,weneed to fix our choice of density-dependence.
We take µ(H) = rHt/K and keep the more general form of par-
asitism described by the negative binomial. The Jury conditions
are then used to construct stability boundaries separating regions
of r − (aK) parameter space (Neubert and Kot, 1992). Columns 1
through 3 of Fig. 1 illustrate the boundaries for the three values
of α: 0 (early larval parasitoids), 0.5 (late larval parasitoids) and
1 (pupal parasitoids). The first row of plots shows the large value
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Fig. 1. r − (aK) parameter-plane describing the stability of the host–parasitoid coexistence equilibrium for Eq. (1), with µ(Ht ) = rHt/K and f (Pt ) = (1 + aPt/κ)−κ .
The degree of parasitoid clumping is given by κ , and aK provides a scaled measure of parasitoid searching efficiency. Columns from left to right indicate increasing α, the
rows from top to bottom decreasing κ . The regions labeled (I)–(IV) indicated different host–parasitoid dynamics: (I) parasitoid extinction, (II) equilibrium host–parasitoid
coexistence, (III) stable population cycles, (IV) chaotic behavior. The shading in the stable coexistence region (II) indicates q = H∗/K , the extent towhich the host equilibrium
is depressed below the carrying capacity K . The light shading corresponds to q ≈ 1 and the dark shading corresponds to q ≈ 0.

κ = 5, random type searching. The second row shows the small
value κ = 1.1, clumped searching. Reducing κ increases the sta-
bility of the model, thereby increasing the size of region (II), stable
host–parasitoid coexistence.
For small host growth rates, late parasitoid emergence increases

the stability of the coexistence equilibrium. For large host growth
rates, coexistence is lost frequently, giving way to parasitoid
extinction or chaos. Stable coexistence of the host with a late-
emerging parasitoid requires a low host growth rate, which limits
density-dependent mortality of parasitized hosts. Parasitoids
emerging later require a greater number of hosts for replacement,
which makes them more vulnerable to extinction, but can also
allow the parasitoid to persist with the host even when the
parasitoid is an overly efficient searcher (corresponding to large
values of a).
The shading in Fig. 1 denotes the value of q = H∗/K , the

extent to which the parasitoid depresses the host below its
carrying capacity. Light indicates q ≈ 1 and dark corresponds to
q ≈ 0. Early-emerging parasitoids depress the host more than
late-emerging parasitoids, when all other parameters are fixed.
However, the shading in Fig. 1 also shows that as α increases, the
region of parameter space associated with low host density (dark
shading) increases. So host density is more sensitive to parameter
changeswhen the host coexists with an early-emerging parasitoid.
Berstein (1986) considered local stability boundaries for the

case where µ(Ht) = r(Ht/K)b. Reducing b below 1 expanded the
region of stable coexistence and increased host levels. The mor-
tality function when b < 1 corresponds to contest competition,
and Bellows (1981) showed that many of the other models of com-
petition can be derived from this mortality function.

3.1. Analysis of the consumer–resource cycles

The remainder of the paper focuses on the consumer–resource
population cycles found in region (III) of Fig. 1. We demonstrate
that the cycle descriptors (period, outbreak duration, etc.) decrease
with α, independently of the functional form of host density-
dependence.
The period of the population cycles close to the stability

boundary can be calculated using the method described by
Murdoch et al. (2002). The coexistence equilibrium of the model
is given by (H∗, P∗) and satisfies
r − µ(H∗)

a
= P∗ = H∗e−αµ(H

∗)
(
1− e−r+µ(H

∗)
)
,

with µ(H∗) < r. (5)

The characteristic equation determining the linear stability of this
equilibrium is λ2 + A1λ+ A2 = 0, where λ is the eigenvalue, and

A1 =
−aH∗e−αµ

1+ aP∗/κ
+

aP∗

1+ aP∗/κ
− 1+ µ′H∗ (6)

A2 =
[
aP∗µ′H∗(1− α)+ aH∗e−αµ(1− µ′H∗)

]
/(1+ aP∗/κ), (7)

where µ′ = dµ(H∗)/dH∗. A Hopf bifurcation from a stable
host–parasitoid coexistence to population cycles occurs when
A2 = 1. The period of the cycles on the stability boundary is then
given by

period =
2π

tan−1
(√

4
(1+Ω)2

− 1
) with Ω = −1− A1.
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To ensure that the coexistence equilibriumhas undergone no other
bifurcation, we need to rule out the occurrence of+1 bifurcations
and −1 bifurcations. This is equivalent to requiring that the first
two Jury conditions are satisfied (i.e. 1 + A2 > |A1|) which is true
provided −3 < Ω < 1. The expression for Ω depends on the
change in host survival due to competition and parasitism.We can
defineΩ = Ω1 +Ω2, where

Ω1 = −µ′e−µ︸ ︷︷ ︸
Change in survival
due to competition

H∗er f (P∗)

Ω2 = −H∗e−αµ
df
dP∗︸︷︷︸

Change in survival
due to parasitism

.

Host survival decreases as hosts increase, so Ω1 is negative. Host
survival decreases as parasitoids increase, so Ω2 is positive. The
period of the consumer–resource cycles increases as Ω increases,
and so depends on host survival. We show that for a large class
of models, Ω is a decreasing function of α, and thus the period of
host–parasitoid cycles decreases with increasing α. To prove this
result we first consider the dependency of H∗ on α.

3.1.1. Host equilibrium density, H∗, is an increasing function of α
Differentiating Eq. (5) with respect to α and collecting terms

gives

dH∗

dα

=Ψ︷ ︸︸ ︷(
µ′e(r−µ)/κ + (ae−αµ − µ′αaH∗e−αµ)(1− e−r+µ)− µ′aH∗e−αµe−r+µ

)
= aH∗e−αµ(1− e−r+µ)µ > 0. (8)

We show that Ψ is positive. Since A2 = 1 and Ω < 1, it follows
that

Ψ = µ′e(r−µ)/κ +
aP∗

H∗
+ µ′aP∗(1− α)− µ′aH∗e−αµ

= µ′e(r−µ)/κ +
aP∗

H∗
+
1− aH∗e−αµ + aP∗/κ

H∗

> µ′(e(r−µ)/κ − (1+ aP∗/κ)) = 0.

Thus, by (8), dH∗/dα > 0 and so the value of the host equilibrium
increases with α. Therefore, if the parasitoids emerge from the
parasitized hosts late in the host life cycle then the equilibrium
host density is larger.

3.1.2. Ω is a decreasing function of H∗ for all κ ≥ 1
To study the dependency of Ω on H∗, we reformulate Ω in

terms of P∗ rather than H∗. This turns out to simplify the analysis.
We have

Ω =

aP∗
1+aP∗/κ − H

∗µ′
(

1
f (P∗) − 1

)
1

f (P∗) − 1
.

DifferentiatingΩ with respect to H∗ and noting thatµ′ > 0 for all
µ(H∗) given in Table 1 yields

−
∂Ω

∂H∗

(
1
f (P∗)

− 1
)2
= H∗µ′′

(
1
f (P∗)

− 1
)2
+ µ′

((
1
f (P∗)

)2

−

(
1
f (P∗)

)(
1+ aP∗ + 2 aP

∗

κ

1+ aP∗
κ

)
+

aP∗
κ

1+ aP∗
κ

)
. (9)

We next show that the termmultiplyingµ′ in (9) is positive. To do
this we consider the quadratic

Z2 − Z
1+ aP∗ + 2aP∗/κ
1+ aP∗/κ

+
aP∗/κ
1+ aP∗/κ

= (Z − Z−)(Z − Z+),

where Z− and Z+ are the roots of the quadratic. Descartes’ rule of
sign tells us that the quadratic has no roots with negative real part;
in fact, the quadratic has two positive real roots. The largest root,
Z+, is given by

Z+ =
[
2aP∗/κ + 1+ aP∗

+

√
(aP∗ + 1)2 + 4(aP∗)2/κ

]/
(2+ 2aP∗/κ).

We will show that 1/f (P∗) > Z+, and it then follows that the
quadratic multiplying µ′ in Eq. (9) is positive.
To show that 1/f (P∗) > Z+ it is convenient to study (1/f −

Z+)(1 + aP∗/κ), which is 0 at P∗ = 0. By showing that (1/f −
Z+)(1+ aP∗/κ) is an increasing function of aP∗ for all aP∗ > 0 and
κ ≥ 1, it will follow that 1/f (P∗) − Z+ > 0 for all P∗ ≥ 0 and
κ ≥ 1.
Differentiating (1/f − Z+)(1+ aP∗/κ)with respect to aP∗ and

taking κ ≥ 1 gives

κ + 1
κ

(1+ aP∗/κ)κ

−

(
2/κ + 1+

aP∗ + 1+ 4aP∗/κ
(aP∗ + 1)2 + 4((aP∗)2/κ)(1/2)

)/
2

>
κ + 1
κ

(1+ aP∗)−
(
2/κ + 1+

aP∗ + 1+ 4aP∗/κ
aP∗ + 1

)/
2

> aP∗ − aP∗/κ > 0. (10)

So (1/f − Z+)(1 + aP∗/κ) is an increasing function of aP∗, as
required. In summary, if µ′′ ≥ 0 and κ ≥ 1 then all terms on
the right hand side of Eq. (9) are positive and ∂Ω/∂H∗ < 0. We
have µ′′ > 0 for models 2 and 7 in Table 1, and for models 4 and 5
provided b ≥ 1 (whichwe now assume; this is the requirement for
scramble competition). Hence, for models 2, 4, 5 and 7 the period
of population cycles decreases with an increasing α. In Appendix A
we extend this result to include the remainder of the models in
Table 1.

3.2. Numerical study of consumer–resource cycles

The stability analysis does not reveal how α affects the
magnitude of changes in period and amplitude of the population
cycles. To resolve this, and validate the analysis, we numerically
calculate the period and outbreak severity as a function ofα (Fig. 2).
The period of the population cycles is estimated to be the

average over 10 cycles. The population cycles arise from a Hopf
bifurcation, and are therefore aperiodic. The averaging process
adjusts for this, producing the smooth curve in Fig. 2a. Outbreak
severity is calculated by arbitrarily choosing a cut-off for host
density of 0.5K , then designating densities above this threshold as
outbreak densities and below as non-outbreak. The proportion of
one periodwhich the host spends above this threshold is calculated
and averaged over 10 cycles.
The designation of 0.5K as the outbreak threshold is clearly

arbitrary. However, for completeness, we calculated the outbreak
length using a range of thresholds. The result was slight variation
in outbreak lengths but no variation in the overall trends, providing
evidence that this is a reasonable measure for the trends in
outbreak severity.
The numerical results in Fig. 2 agree with the analytical

predictions. Parasitoids that emerge late in the host development
exhibit population cycles with a shortened period compared to
parasitoids emerging from early host stages. Thus, discrete-time
host–parasitoid models that assume functionally dead parasitized
hosts (α = 0) potentially overestimate the period of population
cycles. These results hold for κ ≥ 1; however, for small κ the
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Fig. 2. (a) Numerical estimation of the period of the host–parasitoid population cycles as a function of α. As α increases, the period of the oscillations decreases. A cubic least
squares fit through the simulation points illustrates this decreasing trend. (b) Outbreak severity plotted as a function ofα. Over one period, outbreak severity is the proportion
of that period for which host density is above an arbitrary threshold of 0.5K . Above this threshold is classified as outbreak and below as non-outbreak. The outbreakmeasure
has been averaged over 10 cycle lengths. (c) The maximum and minimum values of the ratio host/parasitoid density reached during one oscillation, plotted against α.
Parameter values used to generate these profiles are as follows: r = 0.9, α = 0, aK = 8, κ = ∞ (random searching), where functions µ and f are as in Fig. 1. The bold and
dotted lines in plot (a) are the results of the generalized Beverton–Holt µ(Ht ) = ln(1+ (er − 1)b(Ht/K)b), and the generalized Ricker µ(Ht ) = ln(r(Ht/K)b), respectively,
with b = 0.8. To illustrate the effect of κ , the open circles illustrate the case of κ = 15. Simulations were run for 7000 iterations to ensure the absence of transients, then
the period and outbreak duration were calculated.

period of the population cycles is reduced and the effects of α are
less pronounced. So clumped parasitism can lessen the effects of
parasitoid phenology.
Figs. 2 and 3 show that the duration of the host outbreak

decreases with α. Fig. 2c depicts the maximum and minimum
values of the ratio host/parasitoid as a function of α and indicates
that fluctuations in host and parasitoid numbers are greater for
small α. Parasitoids that emerge early (small α) experience low
mortality from host competition, but go on to suffer from the
effects of their own efficiency. Early-emerging parasitoids increase
rapidly in response to host numbers, which leads to a collapse
in the host population. Host collapse is followed by a severe
parasitoid decline, allowing the host numbers to recover and
remain unchecked while parasitoids re-establish following their
near extinction. This gives rise to long host outbreaks. In contrast,
late-emerging parasitoids experience high mortality from host
competition, thus parasitoid numbers increase more slowly in
response to high host numbers. Late-emerging parasitoids are
regulated by the host, preventing the boom-bust dynamics ofmore
efficient early-emerging parasitoid. Consequently, late-emerging
parasitoids have a much tighter control of the hosts, reducing the
occurrence of host outbreaks.

3.3. From scramble to contest competition

The generalized Beverton–Holt and generalized Ricker models
of density-dependence (entries 4 and 5 of Table 1) have been
found by Getz (1996) and Bellows (1981) to be good descriptors
of host competition data. The additional parameter b, for b > 1,
describes the strength of density-dependent effects on populations

below the model carrying capacity. The parameter b can also
indicatewhere on the competition spectrum (between contest and
scramble competition) themodel lies, with a large b corresponding
to scramble competition. The analysis in Section 3.1 only holds for
b ≥ 1 and fails to cover the case of strong contest competition.
Fig. 2 illustrates the results of numerically exploring the case b <
1. The results of Section 3.1 continue to hold and late-emerging
parasitoids lead to shorter population cycles. Large values of α
cease to give rise to host–parasitoid cycles when b � 1. This
is not unexpected, as contest competition is generally recognized
as a stabilizing factor. However, we find that contest competition
gives population cycles with an increased period and the effect of
α is more pronounced. Thus phenology has a greater impact on
host–parasitoid dynamics when there is contest competition.
The general trends concerning the characteristics of host–

parasitoid population cycles are unaffected by the type of
competition between the parasitized and unparasitized hosts. The
regulation of the parasitoid by the host stabilizes the dynamics. So
although the averagehost density increaseswithα, the extremes in
host numbers are reduced, allowing the late-emerging parasitoid
to more tightly regulate the host. In the next section we fit the
model to data from the forest tent caterpillar system and test our
theoretical results.

4. Application to the forest tent caterpillar system

The forest tent caterpillar is a mass defoliator of trembling
aspen (Populus tremuloides) forest stands in North America. The
caterpillar periodically reaches outbreak densities, which can
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Fig. 3. (a) Numerical time series generated from Eq. (1) with µ and f as in Fig. 1 and α = 0. The solid line indicates the host and the dashed line the parasitoid density.
The parasitoids reach high densities which then crash alongside the host population. Recovery of the parasitoid population is delayed and hosts are allowed to maintain
outbreak densities for a number of consecutive years. (b) Numerical time series generated for α = 1. The maximum parasitoid density reached is lower and host outbreaks
are shorter. The model was run for 1000 generations and the final 50 were plotted to avoid transients. The carrying capacity of the host population was scaled to 1. The other
model parameters used are aK = 8, r = 0.9 and κ = ∞.

be maintained for up to six years, although on average last
for 2–3 years (Sippell, 1962). Typically outbreaks occur every
10–12 years (Hodson, 1941; Cooke and Lorenzetti, 2006). During
a recent outbreak in Ontario in 1991, 1.9 million hectares of forest
were defoliated (Anon, 1991). These attacks seldom result in tree
death, but growth loss and dieback are common. The exact cause
of this periodic behavior is not known, but connections have been
made to both climate patterns (Roland et al., 1998) and the tight
linkage with fly and wasp parasitism (Parry, 1994, 1995; Roland
et al., 1997).
Both the forest tent caterpillar and most of the fly and wasp

species that parasitise it have univoltine life cycles with non-
overlapping generations. Thismakes the system an ideal candidate
for our discrete-time model. The forest tent caterpillar has five
larval stages. During the first three, larvae are gregarious, staying
on the tree where hatching occurred; foliage consumption is low,
of the order of one leaf per larva. In the fourth and fifth larval
stages the caterpillars are solitary and more mobile, with feeding
increasing significantly. At high larval densities this induces
strong competition for resources and potential larval mortality, as
evidenced by the experiments discussed in Appendix B.1. Some
species of specialist parasitoid oviposit on host pupae, while others
attack larval stages (see Fig. 4). Although one parasitoid species
generally dominates parasitism at any given field site, this can
differ among sites.
Appendix B describes the experimental data, model fitting and

parameter estimation. Table 1 and Fig. 5 summarize the results.
Ricker density-dependence (entry 2, Table 1) provides the most
parsimonious model of host competition. The Poisson model,
f (Pt) = exp(−aPt), gives the best fit to the parasitism data. Lastly,
field experiments (Appendix B.1) allow us to estimate α for each
parasitoid species (Fig. 6).
The parameterised host–parasitoid model exhibits periodic

oscillations in Ht and Pt for all values of α, consistent with the
periodic outbreaks found in forest tent caterpillar time series. To

Fig. 4. Schematic of the developmental stages of the forest tent caterpillar. Li refers
to the ith larval instar. Forest tent caterpillars carry out a majority of their food
consumption during the life stages indicated by density-dependence. The arrows
indicate on average which stage in the life cycle a parasitoid would emerge from
the host. A.m., Aleiodes malacosomatus, is a wasp species. L.e., Leschenaultia exul, and
P.p., Patelloa pachypyga, are more common parasitoids of the fly family Tachinidae.
A.a, Arachnidomyia (=Sarcophaga) aldrichi (Sarcophagidae), is an aggressive pupal
parasitoid, as is C.m., Carcelia malacosomae (Tachinidae).

allow for the fact that natural systems are composed of more
than one parasitoid species, we take α ∈ [0, 1] as a free
parameter and validate the model against an independent time
series from Hodson (1941).

4.1. Validation of the model

Using themethods described in Appendix B.2.2 we examine the
correlation between Hodson’s data and the time series generated
by Eqs. (1). Fig. 7a gives the binary correlation coefficient as a
function of α. Correlation with the Western Canada data set is
maximized when α ≈ 0.35, with 78% correlation. The correlation
is considerably higher thanwhenα = 0 orα = 1, so the data lends
some support to our argument that parasitoid phenology may be
an important descriptor of host–parasitoid interactions.
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Fig. 5. (a) Fit of f (Pt ) = e−aPt to the 1994 parasitism data of Appendix B.2. The line indicates the best fit and the two dotted lines are the 95% confidence interval.
(b) Forest tent caterpillar defoliation data for 1994 (see Appendix B.2.1) used to estimate host carrying capacity, K . (c) Fit of µ(Ht ) = −cHt to the host survival data
discussed in Appendix B.1.

Fig. 6. Graphs of the log of the ratio of host density at instar Li to host density at instar L1 plotted against density at L1 . A linear regression through the data points for each
instar, provides a slopewhich estimatesα. (Data for survival to the 3rd and 4th instar is denoted by ∗, to the 5th instar by �, and to pupation by+). Equations of the regression
lines are as follows: for instar 3 and 4, ln(Ht+1/Ht ) = −0.579 − 0.068Ht ; for instar 5, ln(Ht+1/Ht ) = 0.163 − 1.231Ht ; for pupae, ln(Ht+1/Ht ) = −0.958 − 1.373Ht . We
notice that the gradient of the regression lines decreases as larval stage increases. This is consistent with the fact that larvae do most of their eating in the later stages of
development. Using the average instar at which emergence of each parasitoid species occurs we have calculated α for FTC populations in Alberta. When estimating α, 1–5
refers to larval instars 1–5 respectively; 6 = pre-pupae, and 7 = pupal stage.

We also calculated the binary correlation coefficients to data
from other regions of North America and consistently found that
the correlation between the model and data is highest (75%–95%)

for intermediate values of α. The remaining model parameters
used in these fits are taken from the Alberta data, so we must be
careful not to conclude too much from fitting this to other North
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Fig. 7. (a) Binary correlation coefficient ρ, as a function of α. The parameter ρ describes the proportion of matching between the time series data and the model. The lines
correspond to different thresholds for categorizing an outbreak in themodel. (b) A time series solution of themodel for host and parasitoid density. (c) Themodel time series
plotted as presence/absence of an outbreak using a threshold of 80% of host carrying capacity, with α = 0.35, the value of α that maximizes the correlation between model
anddata. (d) Time series data fromHodson (1941) used to validate themodel. The remaining parameter values used to generate these profiles are as follows: r = 0.96, aK = 8
and κ = ∞.

American regions. However, the high correlations suggest that the
model framework provides a reasonable description of forest tent
caterpillar dynamics.

4.2. Interpretation of model results

In a field setting the late-emerging parasitoid A. aldrichi drops
out of the system at low host densities, while the early-emerging
A. malacosomatus continues to parasitize at low host densities
(Cooke, 2001; Parry, 1994). Although we consider only a single-
parasitoid model, Fig. 3 shows that late-emerging parasitoids do
not deplete the host population as severely as early-emerging
parasitoids. The model suggests that early-emerging parasitoids
can persist at very low host densities, which is consistent with
experimental observations. In the two years following a general
population decline, Hodson (1941) found one caterpillar after
repeated searching in 15 study plots and the surrounding areas.
Similar observations of extremely low population levels have been
reported elsewhere.
Sippell (1957) studied the prolonged caterpillar outbreaks in

Ontario, recording the early-emerging parasitoid A. malacosomatus
as being more abundant in Ontario than in other locations
where outbreaks were shorter. This is consistent with our model
prediction that early-emerging parasitoids are associated with
longer population outbreaks.

4.3. Stochasticity

To test the robustness of our model to environmental stochas-
ticity, we multiplied the right-hand side of (1a) by a log-normally
distributed randomvariable εt withmean 1 and standard deviation
0.3. Using the forest tent caterpillar parameters (with α = 0.35) as
a reference point, we found that introducing stochasticity had little

effect on themodel output and in fact improved the fit of themodel
time series to the data (Table 2). In contrast, when we included
stochasticity for the caseα = 0we found that the average period of
the host population cycles increased by 50%. While Hodson’s data
gave an average period of 11 years between outbreaks, the model
(α = 0) gave 18 years. The other model descriptors were equally
poor and failed to fall within two standard deviations of the data.
From Fig. 1a, when α = 0 the parameter set lies close to a

stability boundary, and stochasticity allows the model to enter
the region of chaotic dynamics. Dwyer et al. (2004) found a
similar phenomenon in their study of gypsymoth dynamics.When
α > 0, parameters remain away from stability boundaries (cf.
Fig. 1c) and the host–parasitoid dynamics do not jump between
attractors. In a host–pathogen-generalist predator model of gypsy
moth outbreaks, Dwyer et al. (2004) found that a significantly
better explanation of the data could be achieved by adopting a
combined effect model, whereby the dynamics jumped between
multiple attractors via ‘environmental stochasticity’. The more
predictable nature of forest tent caterpillar outbreaks, and the
improved fit by the stochastic model for α 6= 0, suggest that
jumping between multiple attractors may not be occurring in
the forest tent caterpillar system. An important feature of the
forest tent caterpillar system is the regional variation in cycle
length, for example, between the provinces of Ontario and Alberta
in Canada (Cooke and Lorenzetti, 2006). The variation coincides
with differences in the composition of the parasitoid communities
and these differences may be an important factor in determining
outbreak duration.

4.4. Extension to multiple parasitoid species

Hosts are often exposed to numerous species of specialist
parasitoids, as observed in the forest tent caterpillar system. It is
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Table 2
Descriptors of Hodson’s data are calculated for 9 regions in North America.

Location Mean period Mean outbreak duration Mean non-outbreak duration
(standard deviation) (standard deviation) (standard deviation)

Western Canada 7.33 (2.94) 3.00 (1.90) 4.33 (2.07)
Central Canadaa 11.25 (7.89) 3.40 (3.36) 9.00 (8.91)
Eastern Canada 11.50 (1.73) 3.75 (1.26) 7.75 (1.26)
Washington 9.20 (2.17) 3.20 (2.17) 6.00 (4.00)
Maine 12.00 (1.41) 5.25 (1.50) 6.75 (0.96)
New Hampshirea 15.33 (6.05) 4.25 (1.26) 11.67 (6.03)
Vermonta 19.00 (4.24) 5.00 (1.41) 14.00 (5.66)
Massachusetts 8.00 (4.52) 2.33 (1.37) 5.67 (3.33)
Minnesota 8.40 (3.36) 2.83 (2.14) 6.20 (3.63)
Model (Eqs. (1)), 18 9.99 8.01
α = 0 [26.85 (24.75)] [25.82 (24.75)] [1.03]
Model (Eqs. (1)), 13.05 5.3 7.75
α = 0.35 [9.57 (3.22)] [5.05 (2.25)] [4.52]
a Needs to be viewedwith caution. The large standard deviations for the Central Canadian data are due to only sporadic one-year outbreaks prior to the 1920s. The Vermont
data contains only two full outbreaks, thus the absence of an outbreak in the 1920s has a large effect on the mean period; similarly for New Hampshire. The last two entries
in the table give the results predicted from Eqs. (1) with α = 0 and α = 0.35; all other parameters and choices for f andµ are as in Fig. 2. Eqs. (1) with α = 0 poorly describe
the data, overestimating outbreak duration and frequency, while Eqs. (1) with α = 0.35 is more parsimonious. The numbers in bold refer to the results of the stochastic
model with forcing term εt .

therefore important to know if our findings extend to multi-
parasitoid systems. A simple model extension to the multi-
parasitoid system is given by

Ht+1 = Htere−µ(Ht )f (Pt; aP)f (Qt; aQ ) (11a)

Late Pt+1 = Hte−αPµ(Ht )


Fraction of hosts

parasitized by P , NOT Q︷ ︸︸ ︷
(1− f (Pt; aP)) f (Qt; aQ )

+

Fraction of hosts
parasitized by P and Q , P WINS︷ ︸︸ ︷

φ(1− f (Pt; aP))(1− f (Qt; aQ ))

 (11b)

Early Qt+1 = Hte−αQµ(Ht )


Fraction of hosts

parasitized by Q , NOT P︷ ︸︸ ︷(
1− f (Qt; aQ )

)
f (Pt; aP)

+

Fraction of hosts
parasitized by P and Q , Q WINS︷ ︸︸ ︷

(1− φ)(1− f (Pt; aP))(1− f (Qt; aQ ))

 , (11c)

which builds on the model by Hogarth (1984). The function
f (Pt; aP) = (1 − apPt/κ)−κ is the probability of the host
escaping parasitism by P , f (Qt; aQ ) is the corresponding function
for parasitism by Q . The subscripts on the parameters refer to
parasitoids P and Q . The model allows for the possibility of multi-
parasitism. The final term in each parasitoid equation denotes
the probability that both P and Q parasitize the host and φ is
the probability that P successfully outcompetes Q and the multi-
parasitized host produces parasitoids of type P .
The model captures a broad spectrum of multi-parasitoid

interactions, however as mentioned in the introduction the timing
of parasitoid attack becomes relevant when more than one
parasitoid species is present. In this preliminary extension to the
multi-parasitism case we assume that the two parasitoid species
attack the same host stage and only their emergence time differs.
We define P as the late-emerger (αP = 1) and Q as the early-
emerger (αQ = 0) and investigate how the timing of parasitoid
emergence effects host–parasitoid population cycles. In the simple
case where multi-parasitized hosts always produce parasitoids of
typeQ (φ = 0)we can prove that the coexistence of two parasitoid

species, one emerging earlier than the other, cannot occur when
the searching efficiency of the late parasitoid is less than or equal
to that of the early parasitoid (see Appendix C). This finding is
consistent with the fixed-delay model of Briggs et al. (1993) which
showed that coexistence was not possible when two parasitoid
species attacked different developmental stages.
In the case where φ 6= 0 coexistence is possible. Numerical

results have lead us to conjecture that the late-emerging para-
sitoid drives the period of oscillations in a multi-species system
(Fig. 8). The significance of this observation is that most discrete-
time host–parasitoid models implicitly study early-emerging
parasitoids by omitting competition between parasitized and un-
parasitized hosts. We suggest that late-emerging parasitoids may
be more important in driving cyclic dynamics in natural systems.
In the forest tent caterpillar example it is generally thought that A.
aldrichi and P. patelloa drive the caterpillar dynamics, and these are
indeed the late-emerging parasitoid species (Cooke, 2001).
In Fig. 8(a) and (b) we plot the period of the host cycles as a

function of aQK and φ respectively. We find that increasing the
searching efficiency of parasitoid Q (early-emerger) has very little
affect on the period of host cycles. The period is close to that found
when only parasitod P is present. Increasing φ, allowing the late-
emerging parasitoid to be most successful during multiparasitism,
decreased the period of the host cycles. When φ ≈ 0.5 the host
period is the sameaswhenonly parasitoid P is present. Fig. 8(c) and
(d) illustrate the temporal evolution of the host–parasitoid cycles,
with and without the late-emerging parasitoid respectively. The
dynamics of parasitoid Q are constrained by the presence of P and
the late-emerging parasitoid drives the host–parasitoid dynamics.

5. Discussion

With a few notable exceptions (Wang and Gutierrez, 1980;
May et al., 1981), discrete-time host–parasitoid models have
not addressed the role of parasitoid phenology in determining
host–parasitoid dynamics. The general framework presented in
this paper allows parasitoid emergence phenology to be described
relative to events in the host’s yearly life cycle. Explicitly, we
describe competition between parasitized and unparasitized hosts
that occurswhen parasitoid development overlapswith the period
of host density-dependent competition.We examined the effect of
parasitoid emergence time under a range of competition models
and found that our qualitative conclusions were independent of
the precise type of competition experienced by the parasitized and
unparasitized hosts.
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Fig. 8. (a) and (b) The period of the host cycles is shown as a function of aQK and φ respectively. The solid line indicates the period when both parasitoids are present. The
starred line corresponds to P only and the spotted line is Q only. (c) and (d) Host–parasitoid cycles are plotted as a function of time. The parameters for all plots are given by:
r = 0.96, aPK = 14.8, aQK = 8.9, φ = 0.5, αP = 1, αQ = 0 and κ = ∞ except in the case where a parameter was varied. Themortality function is given byµ(Ht ) = rHt/K .
In (a) and (b) we see that the period of host cycles in the full H–P–Q system is always below that of the H–Q only system. The late-emerging parasitoid drives the population
cycles. Increasing the searching efficiency of parasitoid Q leads to only a slight increase in host period above that of the H–P only system. Only when Q is significantly more
successful in multiparasitizing the host is the host period closer to that of the H–Q system.

Analysis of the equilibrium dynamics of the model showed that
late-emerging parasitoids (large α) are susceptible to extinction
when host growth rates are high, while early-emerging parasitoids
(small α) can coexist with the host. These seemingly paradoxical
results arise from the nonlinear host population dynamics which
exhibit overcompensation. The coefficient α can be considered
a scaling factor that determines the strength of the nonlinear
overcompensation experienced vicariously by the parasitoid
when it resides in the host. Those parasitoids that emerge
early escape the strongest effects of overcompensation, while
late-emerging parasitoids experience the full overcompensation.
Overcompensation is not simply a model artefact. It is typical of
host–parasitoid models, and the Ricker model, determined to be
themost parsimonious for our forest tent caterpillar data (Table 1),
exhibits this feature also. When the parasitoid is late-emerging,
it may still be able to control the host population, providing the
intrinsic growth rate for the host r is sufficiently small.
Parasitoids are commonly used as biological control agents

for pest host species. In this case correctly predicting persistence
of the parasitoid is essential, so knowledge of the timing of
parasitism and the host growth rate become important when
selecting a suitable biological control agent. We infer that habitats
that promote a high host growth rate for hosts may only be able
to support early-emerging parasitoids. Fragmented habitats, often
associatedwith low host growth,may be better suited to biological
control from late-emerging parasitoids.
The main focus of this work has been the study of the

host–parasitoid population cycles. The period and the amplitude of
these cycles increase with decreasing α, independent of our choice
of competition. The model shows that late-emerging parasitoids
have a stabilizing effect on host–parasitoid dynamics, by reducing
the amplitude of population cycles. Parasitoids that emerge early

from the host induce long host outbreaks. This is particularly
significant for our biological example, the forest tent caterpillar.
Prolonged outbreaks of the forest tent caterpillar can lead to
long-term tree damage, which can have an significant socio-
economic impact. When minimizing the outbreak duration is the
objective of biological control, late-emerging parasitoids would be
the preferred choice of agent.
The modeling formulation presented in this paper is general

so that the type of competition between hosts (parasitized or
unparasitized) can vary during the hosts life-cycle. However, the
results in this paper are confined to studying the case where the
type of competition remained unchanged during the season, or
more generally α remained independent of Ht . While these results
apply tomanyhost–parasitoid systems there is evidence to suggest
that the type of competition can change during the host life-cycle
in some systems. In particular, Lane and Mills (2003) found that
in the Ephestia keuhniella–Venturia canescens laboratory system,
the presence of parasitoids resulted in the host competition
changing from scramble competition to contest competition. This
offers an interesting direction for future work. Within season
changes in competition type can easily be incorporated into the
model and may have a significant influence on the population
dynamics between parasitized and unparasitized hosts. Moreover,
it is no longer just the parasitoid emergence time that needs to
be considered, but also the length of time a parasitoid spends in
the host.
Another important factor that could influence the role of

parasitoid emergence on the population dynamics is the presence
of more than one natural enemy. Specifically, more that one
parasitoid. Preliminary work in Section 4.4 suggests that the later-
emerging parasitoid governs the period of host population cycles
in a multi-parasitoid system, although clearly this needs further
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exploration as we have restricted ourselves to only considering
parasitoids which attack their hosts at the same time. The
preliminary results do emphasize the importance of considering
parasitoid timing in discrete-time models. Age-structured models
have already indicated the importance parasitoid timing for non-
diapausing insects (Briggs et al., 1993, 2000), we now find that
parasitoid timing also impacts on diapausing insects.
Our main result from this paper has shown that host

regulation of the parasitoid has important implications for
the host–parasitoid dynamics. Early-emerging parasitoids induce
more severe host outbreaks, resulting from a less controlled
response to host numbers. The results from this work may have an
application for other biological systems. For example, Bonsall et al.
(1999) studied phenology in a hybrid discrete-time host–pathogen
model in which host density-dependence acted during the
window of susceptibility to a pathogen. They found that the
likelihood of population cycles depended on the strength of host
density-dependence. We have similar findings, suggesting that
the behavior shown in this paper may not be limited to only
host–parasitoid systems, but might also apply to other systems
in which the mortality of an infected host is delayed. Our work
may have further implications for host populations whose larval
development is coupled to temperature or other developmental
cues: faster-developing hosts could release parasitized hosts from
competition more quickly, which could in turn promote host
outbreaks. Many aspects of insect life-cycles, such as phenology
are coupled to environmental cues so an understanding of how
parasitoid-phenology effects host–parasitoid population dynamics
can offer insights into how systemsmay respond to environmental
changes.
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Appendix A. Trends in cycle period for the case µ′′ + (µ′)2 ≥ 0

All the models of density-dependence presented in Table 1
satisfy µ′′ + (µ′)2 ≥ 0 when b ≥ 1. We extend the results of
Section 3.1 to this larger class of mortality functions in the limiting
case κ → ∞; then f (Pt) = e−aPt . We first reformulate A2 = 1 in
terms of P∗, giving

aP∗
(
eaP
∗

− H∗
(
α
(
eaP
∗

− 1
)
+ 1

)
µ′
)
= eaP

∗

− 1.

The left hand side decreases with α. Let ε ≥ 0; then for ε ≤ α ≤ 1,
we have

µ′H∗ <
aP∗eaP

∗

− eaP
∗

+ 1
aP∗(eaP∗ε + (1− ε))

.

Using this inequality and µ′′ + (µ′)2 ≥ 0 with Eq. (9) yields

−
∂Ω

∂H∗
(eaP

∗

− 1)2

µ′
≥

sε(P∗)
aP∗(eaP∗ε + 1− ε)

, (A.1)

where

sε(P∗) = (eaP
∗

+ 1− aP∗)eaP
∗

aP∗(eaP
∗

ε + 1− ε)

− (eaP
∗

− 1)2(aP∗eaP
∗

− eaP
∗

+ 1).

It can be shown that for aP∗ < 0.75, we have s0(P∗) ≥ sε(P∗) > 0
for all ε. As aP∗ = r − µ < r , we can conclude from Eq. (A.1) that
if r < 0.75 then ∂Ω/∂H∗ < 0.
An alternative condition for arbitrary r to give ∂Ω/∂H∗ < 0

requires that α > ε = 0.67. In other words, for an arbitrary choice
of r we need sε(P∗) > 0 for all α > 0.67. This is found by using the
condition thatΩ > −3, which gives

Ω + 3

=
(α(eaP

∗

− 1)+ 1)(aP∗ + 3(eaP
∗

− 1))+ (eaP
∗

− 1− aP∗eaP
∗

)(eaP
∗

− 1)
(eaP∗ − 1)(α(eaP∗ − 1)+ 1)

> 0. (A.2)

Let q(P∗) denote the numerator of the above expression. Then q is
positive for 0 ≤ P∗ < Pα , where Pα is the root of q. These values
of P∗ are precisely those parasitoid fixed points that satisfy the
conditions for limit cycle existence. Thus, it suffices to show that
∂Ω/∂H∗ < 0 for these values of P∗. To show this is true we bound
µ′H∗ using the constraint Ω > −3, and apply this bound to (9).
This gives

−
∂Ω

∂H∗
(eaP

∗

− 1)2

µ′
≥ u(P∗), (A.3)

where u(P∗) = (eaP
∗

− 1 − aP∗)eaP
∗

− (3 + aP∗)(eaP
∗

− 1). But
u(P∗) > 0 for all P∗ > 2, so for 2 < P∗ < Pα wehave ∂Ω/∂H∗ < 0.
It now remains to show that ∂Ω/∂H∗ < 0 for 0 < P∗ < 2.

By Eq. (A.1) this is true for α > ε = 0.67. We conclude that for
arbitrary r the period of population cycles decreases with α, for all
α > 0.67. For the forest tent caterpillar data, r = 0.9, the condition
on α given above becomes less restrictive, and for all α >= 0.25
we have sε(P) > 0; hence by Eq. (A.1), ∂Ω/∂H∗ < 0.

Appendix B. Forest tent caterpillar data and the estimation of
parameters

B.1. Experimental protocol for the estimation of α

The parameter α was determined by estimating the density-
dependent mortality of each larval instar of the host caterpillar in
the absence of parasitism by any species.

B.1.1. Experimental treatments
Fifteen trees were selected within a 0.5 ha area of continuous

aspen forest in the Cooking Lake Blackfoot Wildlife Recreation
Area; approximately 35 km east of the city of Edmonton, Alberta,
Canada. At this site, there had been an outbreak of forest tent
caterpillars that had collapsed in 1996, six years prior to our
experiment. Forest tent caterpillar egg masses from an outbreak
population near Rocky Mtn. House, Alberta, approximately 200
km southwest of the study site, were attached to the trees. The
number of eggs in an egg mass varied, but averaged about 200.
Trees received one of three treatments in the first week of May
before the normal time of egg hatch (aboutMay 10): 1 eggmass per
tree, 5 eggmasses per tree, and 10 eggmasses per tree. Because the
number of eggs per mass varied, egg masses were re-collected at
the end of the experiment so thatwe could count the exact number
of caterpillars that successfully hatched on each tree. The number
of leaf buds were also counted on each tree so that an estimate of
hatched caterpillars per leaf cluster could be calculated for each
tree. As a result, instead of three density treatments, we ended up
with a range of caterpillar densities among the 15 trees ranging
from 0.20 to 4.6 first instar larvae per leaf cluster.
Twelve of the 15 trees were enclosed in a fine-mesh cage that

excluded all parasitoids. Cages were approximately 3 m tall and
1.5 m in diameter, were gathered at the trunk, and enclosed the
entire canopy of the tree. Cages had a zipper running their full
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height so that all parts of the canopy could be easily accessed and
sampled from a step ladder. One of the cages was not completely
sealed and caterpillars escaped; this tree was excluded from the
study. The remaining 3 trees were uncaged to assess the effect of
the mesh cage on the host behavior until the fourth instar when
the larvae become more mobile.
The number of caterpillars surviving in each cage was initially

counted twice per week, but when caterpillars had reached 5th
instar they were counted every second day. Once all caterpillars
had either died or successfully pupated in a cage, the pupae were
counted, collected and weighed to the nearest mg.

B.1.2. Host density-dependence model selection and parameter
estimation
Seven models of host density-dependence, (see Table 1), were

fitted to the experimental data using maximum likelihood fitting
assuming normally distributed error. The seven models were
then compared using corrected Akaike information criteria (AICc)
(Akaike, 1974).
Density-dependence is strongest in the later life stages.

Density-dependence in the early stages, instars 3 and 4, is not
significant, consistent with behavioral observations for these
instars. Survival to the end of instar 5 was used to fit the models
for exp(−µ(Ht)). The results are summarized in Table 1 and
illustrated in Fig. 5. Entry 2, Ricker density-dependence, has the
lowest AICc and is themost parsimonious description of forest tent
caterpillar density-dependence.
Using the approach described in Section 2.1, we estimate α by

fitting a Ricker density-dependence model to the instar survival
data described in Appendix B.1. Using the average parasitoid
emergence times for five parasitoid species taken from Parry
(1994), we calculate α for each of the major species of parasitoid
that attack the forest tent caterpillar. Our estimates of α are likely
to be overestimates of density-dependent mortality of parasitized
hosts, because at very high densities caterpillars move down into
the understory to feed, often totally defoliating the understory.
Understory feeding was not possible in our experimental setup,
thus we may see more crowding effects in the cages than would
occur naturally. Fig. 6 illustrates the data and estimates of α.

B.2. Parasitism rates: Experimental data and parameter estimation

Parasitized and unparasitized caterpillar densities were esti-
mated using a time-limited cocoon search. The time taken to count
50 cocoons is recorded, to a maximum of 15 min. If 50 cocoons
were collected in less than 15 min, then the number that would
have been collected in 15 min was calculated. The full details of
the method are discussed in Roland and Taylor (1997).
There are no known measurements of the statistical distribu-

tion of parasitoid attacks on the forest tent caterpillar. However,
for other tachinids (e.g.Cyzenis albicans attacking thewintermoth),
attacks are often clumped (Hassell, 1980; Roland, 1986). We con-
sidered twomodels of parasitism, the negative binomial model for
clumped attack (f (Pt) = (1+ aPt/κ)−κ ) and the Poisson model of
random searching (f (Pt) = e−aPt ).
Parasitism data (Ht , Pt , Pt+1) was available for three years

(1994–1996). To prevent problems with algorithm convergence
data for which Pt+1 = Ht were removed (1996 data set only). For
this reason, we used nonlinear least squares to fitHt−Pt+1 = f (Pt)
rather than maximum likelihood. For f (Pt) = (1 + aPt/κ)−κ ,
estimates of κ and awere not significantly different from 0 (similar
results for all three years of data). Fits of f (Pt) = e−aPt gave
values of R2 ranging from 0.410 to 0.819. As seen in Fig. 5, the
spread of the data illustrates that this is not an ideal model of
parasitism; however, collection of parasitism data is problematic

and we know of no one who has successfully estimated parasitoid
searching efficiency, a, in a field setting. The data lie inside the 95%
confidence intervals for the predictions. Since 1994 is a year just
prior to an outbreak, the parasitoids are truly searching; the years
following this have hosts in such high abundance that a would be
underestimated. Using the Poisson model for parasitism and the
1994 data we obtain a = 0.03. The 95% confidence interval for this
estimate is small, (0.009, 0.0425).
There is some suggestion that the parasitoid Aleiodes malacoso-

matusmay have a second generation on a different host at the end
of the season. However, as yet this host has not been identified, so
we have omitted this complication from the model formulation.

B.2.1. Estimating the parameters of Ricker density-dependence
The data used in the model selection of µ(Ht) measures Ht in

units of ‘‘number per leaf cluster’’, while the parasitism data is
measured in units of ‘‘cocoon counts’’. Themodel requires the same
units for Ht and Pt , and we cannot easily convert between cocoon
counts and counts per leaf cluster.We can instead directly estimate
parameters for µ(Ht) = Ht r/K using the caterpillar cocoon count
data together with data on the defoliation levels.
We assume that hosts reach carrying capacity, K , at 90%

defoliation. A choice of 90% defoliation was arbitrary; however,
forest tent caterpillar densities must be very close to their carrying
capacity when leaf cover has been driven to these very low levels.
Using nonlinear least squares we fit a Holling type II function
to the data, a reasonable description of the consumer–resource
interaction between the caterpillar and their host plant, aspen. The
type II function allows us to obtain values for K ; estimates were
between 210 and 360 cocoons per 15 min. Combining the three
years of data (1994–1996) yields an estimate of K = 260.
Lastly, we estimate r , the geometric growth rate of the host.

Each female forest tent caterpillar lays only one eggmass, typically
containing 150–350 eggs (Parry, 1994). Sippell (1957) reported
non-parasitoid mortality of the hosts at a level of 98%. Calculations
using our data obtained the same estimate of mortality. Thus,
assuming a 1:1 sex ratio, r ≈ ln(150/2 × 0.02) − ln(350/2 ×
0.02) ≈ 0.4–1.3. This is consistent with the Berryman (1995)
estimates (r = 0.58–1.58) for other forest lepidoptera. Using a
mean egg mass size of 250, we obtain r = 0.9.

B.2.2. Correlation between the host–parasitoid model time series and
data
To validate the model we compared the output time series

to an independent data set, Hodson’s time series for Western
Canada (Hodson (1941)). The data classifies each year as local
outbreak, general outbreak or no-outbreak. We re-classify this
according to the presence (1) or absence (0) of forest tent
caterpillar outbreak. The model output is classified in the same
way, with host densities above an arbitrary threshold classified
as outbreak presence (1), and below the threshold as outbreak
absence (0). As the threshold is arbitrary, we classify the model for
a range of threshold densities from 30% of host carrying capacity,
in increments of 10%, to 80% of host carrying capacity.
To compare the model to the data we use binary correlation

coefficients. For each value of α between 0 and 1 we run the
model for 1000 time iterations to exclude transients, and then
match the end of this time series to the data. We calculate the
number A of outbreak matches, where the model and data both
show an outbreak for a given year; we also calculate the number
of non-outbreak matches D, and non-matches (B + C). The binary
correlation coefficient ρ is the proportion of matches (ρ =
A+D

A+D+B+C ).
When matching the model and data we phase-shift the model

until we have maximized ρ for a given α, to ensure that the data
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and model are in phase when we match the first time point. We
found that correlation between the model and data is maximized
for α ≈ 0.35 (see Fig. 3). Hodson’s times series data is for 23
regions in the US and Canada from 1886 to 1940. Table 2 details
the mean period, outbreak duration and non-outbreak duration
for nine locations. The remaining 14 sites from Hodson’s study
indicated only one complete outbreak during the course of the
study and were therefore omitted.

Appendix C. The coexistence of an early and a late emerging
parasitoid

We consider a special case of Eqs. (11) where αP = 1, αQ = 0,
φ = 0 and κ →∞ andµ(Ht) = rHt/K . Scaling the equations such
that Ht = Kht , Pt = aPpt and Qt = aQ qt gives,

ht+1 = htere−rht e−pt e−qt , pt+1 = aPKhte−rht (1− e−pt )e−qt

and qt+1 = aQKht(1− e−qt ).

We show that coexistence of an early and late emerging parasitoid
cannot occur when the searching efficiency of the late parasitoid
(pt ) is less than or equal to that of the early parasitoid (qt ).

Claim 1. Suppose hmax > h0 > 0 and 0 < p0 ≤ q0 then ht < hmax
for all t ≥ 0, where hmax = 1

r e
r−1.

Proof.

h1 = h0er(1−h0)e−p0e−q0 < h0er(1−h0) <
1
r
er−1,

since h0er(1−h0) has a maximum at h0 = 1/r . �

Claim 2. Suppose aP ≤ aQ , h0 > 0 and 0 < p0 ≤ q0 then pt < qt
for all t ≥ 0.

Proof. Using proof by induction, for t = 1

p1
q1
=

(
1− e−p0

1− e−q0

)
e−q0

aP
aQ
e−rh0 < 1.

The inductive assumption holds for t = k. We now show pt
qt
< 1

for t = k+ 1.

pk+1
qk+1
=

(
1− e−pk

1− e−qk

)
e−qk

aP
aQ
e−rHk < 1. �

Claim 3. Suppose aP ≤ aQ , h0 > 0 and 0 < p0 ≤ q0 then pt → 0 as
t →∞.

Proof. 1. We first show that if pk < qk then 1−e
−pk

eqk−1 <
pk
qk
.

1− e−pk

eqk − 1
−
pk
qk
=
pk −

p2k
2! +

p3k
3! − · · ·

qk +
q2k
2! +

q3k
3! + · · ·

−
pk
qk

=
−
p2k
2! (pk + qk)−

p3k
3! (q

2
k + p

2
k)− · · ·

eqk − 1
< 0.

2. Using Claim 2 we know that pk < qk so part 1 above holds.
Hence, Rk =

pk
qk
satisfies

Rk+1 < Rk
aP
aQ
e−rhk < Rk

aP
aQ
.

Hence, Rk < R0
(
aP
aQ

)k
→ 0 as k→∞.

3. By Claim 1 ht ≤ hmax and therefore qt ≤ aQKhmax = qmax. By
part 2 above we have pk

qmax
≤

pk
qk
→ 0 as k → ∞ and hence

pk → 0 as k→∞.
In conclusion, for pt to persist with qt we require that aP ≥ aQ .
�
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